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The first third of this course will be review from MATH 457. In particular, we will cover
representation theory, with an emphasis on Fourier analysis and induced representations.
The remainder of the course will be an introduction to homological algebra.

We require a cursory understanding of tensor products, categories, and functors. The
official prerequisite for this course is MATH 570 (which includes category theory, commu-
tative algebra, Noetherian rings), but these notes will be written from the point of view of
someone (me) who has not studied these topics.

COMMUTATOR SUBGROUPS

Let G be a group. The commutator of a, b € G, denoted by [a, b], is the element aba v,
Clearly, [a,b] =1 < aand b commute. Let G’ C G be generated by all finite multipli-

cations of commutators, i.e.
G ={la,b]:a,beG)

G’ is called the commutator subgroup of G.

The commutator subgroup of G is normal.
Note that g[a, b]g™! = gaba'b~'g7! = [gag™!, gbg™']. Then,

glay, byl [an, bylg™" = glay, bilg™" - glas, bylg™' - .- glan, bylg ™' € G’ O

If H <« G, then G/H is abelian &< G’ C H.
Suppose G/H is abelian. Consider aba~'b~! = [a,b] € G’. Then
aba 'b'H=aH bVH -a'H-b"'H=0aa'H bb"'H=H
Hence, [a,b] € H, so G’ C H. Conversely, suppose G' C H. Then
a'b'abH = H = abH = baH
so G/H is abelian. O

G/G’ is the largest abelian subgroup of the form G/H for H < G. In other words, G’ is the
smallest normal subgroup of G such that G/G’ is abelian.

Suppose G/H is abelian. Then G’ € H by Prop 1.2. Thus, |G/G’| > |G/H]|. O
G% .= G/G’ is called the abelianization of G.

Theorem 0.1 Unique Factoring Over Abelianizations

Let ¢ : G — A be a homomorphism into an abelian group. Then ¢ factors uniquely
into ¢ = P o 7, where 7w : G — G is the natural quotient and 1 : G** — A.
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Recall the homomorphism theorem, of which the isomorphism theorem is a special
case. Let ¢ : G — H. Let N C ker(¢) be a normal subgroup of G. Then ¢ = ¢ o 7,
where 77 : G — G/N is the natural quotient and ¢ : G/N — H is a homomorphism
(surjective into Im(¢)). Moreover, this decomposition is unique.

We apply this directly to the theorem above. Since A is abelian, so is Im(¢). But
Im(¢p) = G/ ker(¢@). By Prop 1.2, it follows that G’ C ker(¢). Since G’ is normal, the
homomorphism theorem applies. O

TENSOR PRODUCTS OF MODULES

Let Modgr and gMod denote the categories of left and right modules over a ring R,
respectively. Recall that, for an R-module M, r € R, and m € M, left modules act by
(r, m) — rm and right modules act by (r, m) — mr.

If a module is both a left and right module, and obeys all respective module axioms, we
call it a bimodule, and write gModg for the category of bimodules.

If A € Modg and B € gMod, an R-biadditive map is a function
f:AxB—>G
where H is a abelian. Additionally, we require that
* flay +ay b) = f(ay, b) + f(ay, D)
* fla,by+by) = f(a, by)+ f(a by)
* f(ar,b) = f(a, rb)
As H is a group, we do not impose any scaling qualities for f with respect to R.

We would like to construct an abelian group G and associated R-biadditive function ¢
such that, for any R-biadditive function f, there is a unique group homomorphism g with

AXB —¢— G=1A®gB

f
commuting. If such a pair (G, @) exists, we say it satisfies the universal property.

T

Construction
We will construct a group G which satisfies the universal property, as above

Consider H = Z - (A x B), the Z-module, and hence free abelian group. In other words,

H 3 h = & p)eaxBk(ap) - (4, b) where kp) € Z

PROOF.

1/7/26
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Furthermore, consider the subgroup N < H by
N = {(ay + ay, b) = (a1, b) — (a3, b)} U {(a, by + b3) = (a, by) = (a, by)} U {(ar, b) - (a, rb)}
under a,a; € A, b,b; € B,and r € R.

Define A ® B := H/N, and call this the tensor product of A and B over R.

Let ¢ : Ax B — A ®g B be the natural map formed by viewing (4, b) as an element of the
Z-module H, and modding out by N as above.

Immediately, we see that the subgroup N ensures that ¢ is biadditive.

We denote the image of (4, b) under ¢ by a® b, and call the result a tensor.

(¢, A ®g B) has the universal property.

V* = Homy(V, k) is called the dual vector space. Recall that dim (V™) = dim (V).

Theorem 0.2 Properties of the Tensor Product
1.
2. Hom(V, W)= V*®; W, V, W are finite dimensional vector spaces over k.
3. dim(V @, W) = dimy (V) - dimy (W)
4. If f € Homg(A, A’), g € Homg(B, B), then
f®g:A®r B— A’®g B given by (a® b) — f(a)® f(b)
is a homomorphism.
5. If A2 A’and B= B/, then AQg B=A’®z B’
6. AQg R=Aand Rr B=B
7. (®ic1Ai) ®r B = ®ici(A; ®r B) and A ® (®ie;B;) = ®ic1 A ©r B;
8. If R is commutative, then A ® B = B®y A.

9. If R is commutative, then A ®p (B®g C) = (A ®r B) ®x C.

REPRESENTATIONS OF FINITE GROUPS

A linear representation of a finite group G is a vector space V over a field F equipped with
a group action
GxV >V

that respects the vector space, i.e. mg : V. — V with m,(v) = gv is a linear transformation.

We make the following assumptions unless otherwise stated:

1. G is finite.

One shows manually
that this is a group
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2. V is finite dimensional.
3. Fis algebraically closed and of characteristic 0. We write F = C.

Since V' is a G-set, p : G — Autc(V) which sends g — m, is a homomorphism.
Relatedly, if dim(V) < oo, then p : G — Autc(V) = GL,(C).

The group ring C[G] is a (typically) non-commutative ring consisting of all finite linear
combinations {}_ gcgAgg : Ag € C}, with 1- 15 = I¢(g)- It's endowed with the multiplica-

tion rule
[Zagg](Zﬁhh]: ) agBulgh

4€G heG (3,h)e€GXG
We can view representations as a module over the group ring C[G].

Let V be a C[G]-module. Consider g € G C C[G], A5 € C[G], and vy, v, € V. Since
V is a C[G]-module,

g(vi +v2) = gvy + g, (gh)vy = g(hvy)

Then: (gAlg)v; = (AMglg))vy = (Ag)vi. But also, (gAlg)vy = g(Algvy) = g(Avy).
Hence, the map v — gv is a linear transformation on V over C. O

We will frequently return to this view when module theory is more convenient.
Eg. 0.1 Consider p : G — {1}, the trivial representation, which maps p(g)(v) = v. We
will denote the trivial representation simply by 1, subject to context.

Eg. 0.2 We call p™8 : h > [dec g8 P ) e aghg] the regular representation, with
G O C[G] by left multiplication.

Over C, C[G] has basis {g, ..., £,}, where n = |G|. Then x(h) ={g; € G: hg; =
g;}. If h =1, then x(h) = |G|. Otherwise, it is impossible for hg; = g;.

Xreg(g) = {|G| §=1

0 0.W.

We conclude that

Examples

RESTRICTED AND INDUCED REPRESENTATIONS

Let H < G be a subgroup. Then we consider a functor between the categories of represen-
tations of G and H,

Resg :Rep(G) > Rep(H): p— ply = Resg(p)
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called the restricted representation of G to H. Analogously, this sends a C[G]-module V to
the submodule W defined over C[H].

Similarly, we consider a functor
Ind§; : Rep(H) — Rep(G) : V > C[G] ®c(p V

called the induced representation of H to G, where we view V as a C[G]-module. Observe
that dime)(C[G]) = [G : H], so dim(Ind§) = [G : H]dim(V)).

Eg. 0.3 Consider H = {1} with the trivial representation on V = C. Then Indg(C) =
C[G]®c C = C[G], i.e. the regular representation.

DUAL REPRESENTATIONS

Let p, V be a representation of G. Recall the dual, V* = Hom¢(V, C), the set of linear
transformations from V — C. Given an endomorphism T : V — V, we call

T : V= V' (The)(v) := ¢(Tv)

the transpose. If p = {vy,...,v,} is a basis for V, then we construct the dual basis p* =
{¢1, ..., n} for V¥, where @;(v;) = 6;;. In the dual basis, we have

[T!)p = [T]g = tr(T) = tr(T?)
See MATH 251 notes. O

When T = p(g): V — V, we also observe

(p(gh)'@)(v) = (p()' p(8) P)(v) = p(gh)" = p(h)'p(g)’
Given a representation p, p* : G — GL(V*) by g — p(g~!)" is called the dual representation.
XP* = X_p

If g € G has order #n, then p(g) has order m|n, since p(g)" = p(g") = p(1) = I. Hence,
in a certain basis,

n

It follows that

If £ is a root of unity,
EE=1 (try viewing
this geometrically)
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Thus, tr(p*(g)) = tr(p(g_l)t) = tr(p(g‘l)) = tr(p(g)), using Prop 1.2. O

1-DIM REPRESENTATIONS

A 1-dim representation (p, V) is a representation with dim(V) = 1. In this case, as V is a
C-vector space and p(g) € GL(V), we write V = C*. Also observe that x, = p.

G* = Hom(G, CX), as groups, is called the group of multiplicative characters.

If G is a finite, abelian group, then every irreducible representation has dimension 1.

See MATH 457. OJ

Gy = G*

If f € (G*)* is a homomorphism f : G* — C*, then fom: G - G/N — C¥is also a
homomorphism. Conversely, any F : G — C* must factor uniquely into f o 7@ by Thm
1.1, where f : G — C*. See the following diagram:

TENSOR REPRESENTATIONS

If p is a finite representation of G and 7 is a 1-dim representation, we can generate a new
representation

p®T:G—>GL(VecC)=GL(V): g 1(g)® p(g)
Note that 7(g) € C*, s0 xpgc = TX,-
In generality, given two representations p;, p,, we generate the tensor product representa-
tion p; ® py over V; ®c V3, with dimension dim(V;)dim(V5) and trace x, x,,-
Irreducible Representations

Let (p, V) be a representation. It is called an irreducible representation if there are no G-
stable, nontrivial subspaces of V (i.e. no nontrivial subrepresentations). In the language
of modules, irreducible representations are simple C[G]-modules.

Theorem 0.3 Semi-Simplicity of Representations

Every finite dimensional, non-zero representation of G is a direct sum of irreducible
representations.

DEF 0.19

DEF 0.20

PROP 0.8

PROOF.

PROP 0.9

PROOF.

DEF 0.21
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Pick any Hermitian inner product (-, -) on V. Define

(w,0) = 1) (g gv)

geG

It can be easily verified that (-, -)* is an inner product which is G-equivariant. If W C V
is a subrepresentation, then set Wt = {u : (u,v) = 0 Yv € W}, i.e. the orthogonal
complement of W with respect to (-, -)". It follows that V = W & W+, with W+ being
G-stable by the G-equivariance of the inner product.

We then argue by induction to yield a direct sum of irreducible representations. See
MATH 457 for more details on semi-simplicity. ]

Based on this proof, we see that p(g) is unitary. One necessary and sufficient condition for
a transformation to be unitary is the existence of an inner product (-, -)* with (Tv, Tw)" =
(v, w)". Unitary matrices are interesting for the following reasons:

—t

* p(g) =p(e) =p(g7)

* p(g)is diagonalizable. With g"" = 1, we must be able to write p(g) with roots of unity
on the diagonal and zeros otherwise. In particular, the i-th diagonal element is &;,
where élm" =1, m;|n.

SCHUR'S LEMMA

In this section, we will build up the intuition necessary for proving Schur’s Lemma.

Let (p, V) be a representation. Let V¢ = {v : p(g)(v) = v : Vg € G} be the space of
invariant vectors. Notice that V© is a subrepresentation of V equivalentto 1@ --- @1 .
S |

dim(V ) times

dim(V) = & ¥ e 1,(8)

Letmm:v— ﬁ deG p(g)(v). Writing p(h)m = ﬁ deG p(hg) = |1f| deG p(g) verifies
that Im(7t) C VC. It is also easy to verify that 7|yc = Idyc. Hence, we may write
V = ker(m) ® VG. It follows that, in some basis,

n_(o 0 )
0 Igim(ve)

and thus tr(r) = dim(V6) = & ¥ eeq xp(8). O

Let (p1, V1), (p2, V2) be two representations. Consider
Hom¢(Vy, Vo) ={T : V; —» V, with T C-linear}
This is a C-vector space of dimension dim(V;) dim(V,). Similarly, we consider

Homg(Vy, Vo) ={T : Vi — V, with Tp;(g) = p2(g)T}

Recall that 1 denotes
the trivial
representation.
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It is often more natural to think of Homg(V;, V;) as transformations which satisfy T(gv) =
gT(v) Vv € Vi, noting the distinct actions of g on V; and V), respectively.

Over the vector space Homg(Vy, V,), p: g = [T = p2(g7!)Tp1(g)] is a G-representation. PROP 0.11

Clearly p,(g~')Tp1(g) € Homg(V;, V). Also note PROOF.
p2((gh) ™) Tp1(gh) = pa(h " )pa(g ) Tp1(8)p2(h)
so p(gh) = p(g)p(h). O
Hom(V;, V,) = (Homg(Vy, V)€ PROP 0.12
Let T € (Homg(V;, V,))C. Let g € G. Then PROOF.
gT=T = py(g )Tpi(e) =T = Tpi(g) = p2(e)T O
Homc(Vy, V) = Vi ® V; as vector spaces and as G-representations. PROP 0.13
dim(Homg(V1, V2)) = i Lgec X1(8)x2(8) PROP 0.14
PROOF.

dim(Homg(V;, V,)) = dim(Homg(Vy, V,)¢) = dim((V; ® V,))

1 1 1 _
lTe Z?fpiobpz =Gl Z?fp’ixpz =Gl Z?fpl?(pz
| IgGG | IgGG L€

geG
1
—@ZXM()Z
geG

In the last step, we use the fact that the dimension is always real, so dim = dim. [

N\

Eg. 0.4 Let G=S,,V = C", and let p be the standard representation (i.e. permuting
indices). Then VC = {(x, .., x) : x € C}. This implies that

1 =dim(VE) = |1€| Z Xp(0)  Prop 1.10
o€S,

But the trace of p(o) is exactly the number of fixed points of ¢. To see this,
note that ¢ permutes i — j if the i*" row is equal to ej. Hence

1
1:EZ#PPOfU
o€eS,

On average, then, a random permutation has 1 fixed point.
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Theorem 0.4 Schur’s Lemma

Let (p, V), (1, W) be irreducible representations of G. Then

C pPET

Homg(V, W) = {0 0t

We claim that any nonzero T € Homg(V, W) is an isomorphism.

ker(T) and Im(T) are subrepresentations of p and 7, respectively. Since both p and 7 Equivelantly, the

are irreducible, it follows that ker(T) = V v 0, and Im(T) = W Vv 0. kernel and image of
a homomorphism of

ker(T) = 0, since T is nonzero. Im(T) # O for the same reason, so Im(T) = W. It modules are

follows that T is an isomorphism. Immediately, Homs(V, W) = 0 when p = 7. submodules
Suppose p = 7. We can write Homg(V, W) = Endg(V). Let T € Endg(V) be nonzero.
Let A be some eigenvalue of T with corresponding eigenspace U, C V. Then
T(gu)=g(Tu)=g(Au)=AguVueU,geG
It follows that gu € U,. Hence, U, is a G-stable subspace, and hence a subrepresenta-
tion. By irreducibly, Uy = V,so T = A.
By this argument, we can map T — Ap = tr(T)/dim(V) € C. The converse map
A — AI completes the proof. The well-structuredness of this map derives from the
fact that
tr(T+G)  tr(T) tr(G)
dim(V)  dim(V) dim(V)
O
Class Functions
A function f : G — Cis called a class function if f(hgh™) = f(g). In other words, f is
constant on each conjugacy class of G.
We will denote by h(G) the number of conjugacy classes of G. Similarly,
Class(G) = {f : f is a class function on G}
Note that Class(G) is a C-vector space with dimension h(G). Its basis consists of
functions that are
Eg. 0.5 If G is abelian, then h(G) = |G]|. the identity on each
class, and zero
elsewhere

Eg. 0.6 h(S,) is the number of permutations of n.

We can endow Class(G) with the inner product

(p. )= Ilfl ) el@v(e)

geG
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Note also that x, is a class function. For the following theorems and propositions, we
will denote by (py, V1),..., (pn, V) the irreducible representations of G, along with their
dimensions d; and characters A; for i € [n].

Theorem 0.5 Irreducible Characters Form Orthonormal Basis of Class(G)

Up to isomorphism, the irreducible characters of G form an orthonormal basis for
Class(G). We conclude that #h(G) = #irreducible representations of G.

Let 0, T be irreducible representations. We do not distinguish between ¢, T and their
associated vector spaces. Then, by Schur’s Lemma (Thm 1.4) and Prop 1.14,

) . 1 —
g, = dim(Home(0, 1)) = 1= ) xoTx = (o )
geG

From this, we conclude that the irreducible characters are orthonormal in Class(G). It
remains to show that they are a basis. From linear algebra (see MATH 251), we recall
the criterion

(xi»B)=0Vie[n] = peClass(G) =0

This ensures that Fourier coefficients always exist using the irreducible characters
provided, which establishes spanning-ness. Let @ € Class(G) : G — C. Consider

Ap=) a(g)p(g) € Endg(V)
geG
We claim that A, € Endg(V). Write

p(MAp(h™) =) a(g)p(hgh™) =) alhgh™)p(hgh™)
geG geG

=) algp(g) = A,

geG

We claim that, if @ = g, with p irreducible, then Ap = 0. Schur’s Lemma gives the map

EndG(V) —>C: T+ dtllil’l(;)))
Which we apply to A 0
tr(lgec a(glp(8) |G| 1 e )
Ap = dim(p) - dim(p)@g;?{p(é’)ﬁ(g) = dim(p) <)(p, /5> =0

This holds for any irreducible representation, so, in particular, A, Vi € [n]. It must
also hold for the regular representation. Hence, Az = 0 on Endg(C[G]). Consider

PROOF.
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T5. Then we must have

) a(@)p™E(e) (1) = ) a(g)lg] =0

geG

geG

Since [g] : g € G is a basis for C[G], it must be that a(g) = 0 Vg € G. As a = , the

result follows.

O]

Theorem 0.6 Mascke’s Theorem

If (p, V) is a representation of G, then it has a unique decomposition

where a; = (4,, ;).

p=pl' @ ®py" Vi

Letting a; be as in Thm 1.3, we know x, = Y ", a;A;. It remains to show that a; are

unique. But we can compute

PET & Xp= Xt

n

<Xp1Xi>:Zai (Xjrxi) =a;

'_ | I—|
=t 5 by Thm 1.5

We only need to consider the ( &< ) direction. In this case, we write

(Xp’ Xi> = <X’D Xi) Vi

But these are the multiplicities of the irreducible charactersin pand 7,sop = 7. [

Let p"®8 be the regular representation of G on C[G]. We have

Consequently, |G| = Y., d?.

d d,
preg§p11®...®pn

1
(€

re ) _L re ol = e . — 4.
(X8 1) = |G|geZGX 8(9)xi(8) = r5lGlai(1) = d;

p is irreducible — ||x,

representations < |[x,

I

&

O]

= 1. Similarly, p is the direct sum of two irreducible
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We know ||)(p||2 = Zf’zl a?‘, where a; is the multiplicity of the i-th irreducible repre- PROOF.
sentation in p’s decomposition. Recall
Xl = {Xpr Xp) = (@1X1 + oo + B 81 X1 + o + AR
h
=) (aixiaixi+ ...+ apxn)
i=1
h h
= Zaf (Xirxi) = Za%
i=1 i=1
It follows that ||)(p||2 = 1 if and only if exactly one of af =1,1i.e. x, is irreducible. If
lIxplI? = 2, we must have some i = j with a} = a]? =1,and so p = p; ® p;, where p;, p;
are irreducible. O
Eg. 0.7 Consider S, : n > 2. We consider pStd, the natural action of S,, on a set of n
elements (e.g. permuting the indices of v € C"). Recall Example 1.4, where
we derived . .
_ = std _
1_n!Z ()_n!Z#FPofU
o€S, o€eS,
But also ] 1
eI = — ) ()P = — ) (#FPof o)
O'ESH O'ESH
To analyze this equation, we define an action of S, on [n]?, which sends
o(i,j) = (o(i), o(j)). We observe exactly 2 orbits under this action: {(i,i) : i €
[n]} and {(7, j) : i # j € [n]}. By Burnside’s Lemma,
1 2
Z_E Z( FP of o on [n]9)
o€esS,
Observe that, o has a fixed point (k, £) € F on [n]? if and only if it is fixed on
each coordinate of each fixed point. In this way, we have a n— to — n*> mapping,
and conclude that ||xstd|2 = 2.
Note that the trivial representation is a G-stable subrepresentation of pStd. By
"subtracting" 1 from pStd we can recover the other irreducible representation
implied by the computation above, which we denote by pStd'O. In particular
pstd -1 pstd,O
Every irreducible representation of an abelian group is one dimensional. PROP 0.18

As G is abelian, h = |G|. Then, |G| = Z'Sl d?, from which we conclude d; = 1 Vi. O PROOF.
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Character Tables

We'll fire off a few propositions that follow immediately from the work we’ve done on
class functions. } [ d;x; = Xreg (recall Def 0.13)

Follows immediately from Prop 1.19. O]
. . 0 x =1
Let x beirreducible. Let Cy, ..., C,, be conjugacy classes. Then ) 1", x(C;)|C;| = G N
X =
By x(C;), we mean the representation evaluated on any element in C;.
Note that x1(g) = 1 Vg € G. Hence,
ZX NCil =) x(9)x1(8) = Gl (x x1)
gcG
O

The number of 1-dim irreducible representations is equal to |G|,

Observe that G* = Hom(G, C*) = Hom(G?, C¥) by Thm 1.1. But, in homework, we
proved Hom(G?, C*) = G (in particular, for any finite, abelian group). O

The inner product of character table rows, weighted by class size, is 0, unless the rows are

equal, in which case it is |G|. Similarly, the inner product of character table columns is 0,

unless the rows are equal, in which case it is ||g||

For rows: Y1y xi(Co)x;(COICK = Lgec xi(8)x;(8) = IGI{xi, x;)-
For columns, see MATH 457. O

If dim(x;) = 1, then ¥j € [n], x;x; is also an irreducible character. We call this twisting.

XiXj refers to the character Xp:&p;- We use the criterion outlined in Prop 1.20.

;I = lGlel (&)xi(8)xj(9)x;(8) = Il =

geG

Observing that x;(g) € C* is a root of unity, and therefore x;(g) = xi(g)™' = xi(g7}).
We conclude that x; x| is irreducible. O

We define ker(x) = {g: x(g) = x(1)}. Recall x(1) = dim(V).

ker(x,) = ker(p), where p is not necessarily irreducible.

Recall that the
number of conjugacy
classes and
irreducible
representations are
the same, i.e. n



Recall that
pi:G—>GL(V;)isa
homomorphism
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With g" =1, recall that we can write

&1
p(g) = & =1
&a

Then, x(g) =d < p(g) =1; < g € ker(p). O

Let p be a representation with a decomposition into irreducible characters x, = ) jcr 4 X,
a; > 0. Then ker(x,) = Njer ker(x;).

g €ker(x) <= p(g) = Laim(p) Vi €I < pi(g) =1z, & g € ker(x;) Vi € I. For
the middle if-and-only-if, note that, as a direct sum of irreducible representations,

we may write p(g)’s matrix as a; diagonally-adjacent block matrices of p;(g), for each

iel. O

For any N <G, we have N = ker(x) for some representation y.

Let o be the composition of maps
s preg
G - G/N — GL (C[G/N])

Then o is a representation, and ker(n) = N. But p.e4(g) is faithful, i.e only the identity
when g = 1. We conclude that ker(o) = N, so ker(x,) = N. O

Theorem 0.7 Normal Subgroups and Characters
Let N; = ker(x;) : i € [n]. Then, for any I C [n], we have
N = ﬂ N;
iel
is a normal subgroup of G. Furthermore, for any N <G, there is some index set I C [n]
for which N = Nj.

Since N; = ker(p;), we know that N; < G. Thus, N; = N;¢;N; is also normal. Finally,
if N <« G, then by Prop 1.29, N = ker(x) for some representation x. By Prop 1.28, we
can write N = N;cy ker(x;), where p = ®;c;p%. Ol

Induced Representations

Let H < G, and let (p, x, V) be a representation of H. Recall the induced representation,

Def 0.15, Indg(p) = C[G]®&c[n) V. We wish to study its character, denoted by IndIG{()().

PROOF.

PROP 0.25

PROOF.

PROP 0.26

PROOF.

PROOF.
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PROP 0.27
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Let g1, ..., g4 be the coset representations for H, where d = [G : H]. In particular, we can
write G = U;e(q)&iH, and thus C[G] = ®;¢[4)[&;]C[H]. Then

Indg;(p) = (EBie[d][gi]C[H]) ®ciH] V = ®ie(a) ([gi]C[H] ®c[H] V) = ®jc[a)([8i] B[] V)

Given g € G, how does Indg(p) act? We first write gg; = g;h for some unique coset
representative g and h € H. Then,Vv e V,

g([gil®v)=(g®1)([gi]®v) =[ggi|®v =[gjh]®V

From here on out, we will drop the [-] notation. Now, viewing p as a C[H]-module, and
using the balancing property of tensor products, gih ® v = g; ® hv, where hv = p(h)(v):

g(gi®v)=g;®p(h)(v)

At this point, we let /i(g, i) be element h € H that satisfies gg; = gjh = g;h(g, ). Similarly,
we let 6(g, 1) be gj € G such that gg; = 6(g, ))l(g, 7).

In Indg(p), we have

8(81 ® Vi, 82 ® Vi) = (0(8,1) ® p(R(g, 1))(v1), ..., (g, d) ® p(R(g, d))(va))

0(g, i) : i € [d] permutes the basis vectors g, ..., g;. Hence, Indg(p)(g), in some suitable
basis, can be thought of as a set of block matrices {p(h(g,i)) : i € [d]}, positioned accord-
ingly in columns i € [d]. However, to account for the permutation (g, i), the block matrix
p(h(g, 1)) is placed in the (g, i)-th row, or rather the k-th column, where g; = 6(g, 7).

This block contributes to the trace if and only if 6(g, i) corresponds to the i-th basis vector,
ie. &= gg; =ghg i) = gi_lggi € H. In this case, the trace contributed is equal to
x(h(g, i) = x(g7'ggi)- In short, then, we have the following result:

Theorem 0.8 Character of the Induced Representation

Ind§(x)g) = )  x(g'8g)
88 ' ggi€H

See above discussion. O

x(g) geH

This lends itself to some simplifications. We adopt the notation x(g) = {O
o.W.

Indf;(0)(g) = o7 ) K(b™'gh)
beG
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Indf;(x)(8) = Licia) X(8; ' 88i)- Let h € H. Then (g;h) " g(gih) = h™' (g7 ggi)h. But x
is a class function, so )((h‘l(gi’lggi)h) = )((gi’lggi). As g; are coset representatives,

1 - L
) A gh) = (g ggi)
beg,-H

Then, summing over cosets gives the result. O]

When H <G,

H Loec X(b7'gb) g€ H

Indg(x)(g) = {o ceH

Since H is normal, b-'¢gb € H <= g € H. It follows that y(b~'gb) = x(b~!gb) when
g € H. On the other hand, we have g ¢ H <= b~ 'g¢b ¢ H, so y(b~'gb) = 0 when
g€ H. O

Theorem 0.9 Frobenius Reciprocity

Let H < G. Denote by (-, )y and (;,-); the usual inner products on Class(H) and
Class(G), respectively. Let #7 and y be representations of H and G, respectively. Then

(Indf (), ¥),, = (n Res§i(y)),,

(Ind§n), ), = e Y10 @ = i Y Y (7 gby ()
8

g€G €G beG
1 J
= L 1oy
g,b:b-1gb=teH

1 — 1 —
= G Y ay(btbT) = e Y ()

teH beG teH
= (n,Resi(y)),, O

Eg. 0.8 Let H = {1} and 7/ = X{iy- Then Indg(q) = Xreg- Let x be irreducible on G. By
the theorem above,

<Xregl X>G = <Xtriv: O->H = dlm(X)

where o is a dim(x)-identity matrix on H = {1}. At the same time, we know

PROOF.

PROP 0.28

PROOF.

PROOF.
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that (Xreg, X)c is the multiplicity of x in x;eg. But this is exactly consistent
with what we found.

Supersolvable Groups

DEF 0.27  We say that G is solvable if there exists a chain
G=Gy2G;2---2Gy ={1}

with G;;1 < G; and G;/G;,; abelian. We may assume that G,;/G;, is cyclic of prime
order.

PROOF. Refine the chain until no normal subgroups can be inserted. In other words, if there

exists H : G;,1 <H < G;, insert this into the chain. Once this is complete, it must be
that G;/G;,; is simple. Suppose not, and let H < G;/G;,; Consider the following:

G;
|
\/5
Gctdcn Gi/Gi+1
e
e
Gi+1 H

{1}

The preimage under a homomorphism of a normal subgroup is also normal. This
contradicts the refinement of the chain. It is well-known that the only simple abelian
groups are prime and cyclic. Hence, G;/G;,; are assumed to be so. O
DEF 0.28  We say that G is supersolvable if there exists a chain
G:G()QGlQ"'QGN:{l}
with G; < G and G;/G;,; cyclic. As before, we may assume that G;/G;,; has prime order.
PrROP 0.29  The following are properties of supersolvable groups:

1. If G is supersolvable, then sois H < G
2. If Gis supersolvable, and G — H is surjective, then so is H
3. If Gis a p-group, then it is supersolvable

4. If Gy, G, are both supersolvable, then so is G; & G,.

Theorem 0.10 Blichfeldt’s Lemma

Let G be a finite, non-abelian supersolvable group. Then there exists N < G, with N
abelian but N ¢ Z(G).
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Since G is non-abelian, we know Gy = G € Z(G). But it is true that Gy = {1} € Z(G). PROOF.
Hence, there must be some G; with G; € Z(G) but G;_; C Z(G). It only remains to
show that N = G; is abelian.

Since G;/Gj,; is cyclic, we can generate it with (x) for some x € N. Then, any element
in G; can be written as x?y for some integer a and y € G;,;.

G;1CZ(G)
a a =1= a a _ a a
X 1y1x Zyz — X 1x Zylyz =\ Zyzx lyl

as desired. O

Theorem 0.11 Blichfeldt’s Theorem

Let G be a finite, supersolvable group. Let (p, V) be some irreducible representation
of G. Then p = Indg(xp) for some subgroup H < G and 1-dim representation i of H.

If G is abelian, we have no work to do. Indg(p) = p clearly, and for all representations PROOF.

of G, p € G"is 1-dim. Hence, assume G is non-abelian. We also assume that p is
faithful, i.e. has a trivial kernel, as quotients of supersolvable groups are supersolvable.
In particular, p is faithful on G/ ker(p).

We proceed by induction on |G|. Let N be as in Thm 1.10. Then V can be viewed as a
representation of N via Resf,(p). As N is abelian, its irreducible characters are 1-dim.
Hence, V = @ycn- Vy, where Vy, = {v € V : p(n)(v) = ¢(v) Vn € N}

For any 1 € N* and g € G, we define 8 : N — C* : &(n) = (g~ 'ng). We claim that
p(g)isamap Vy — Vys. Let v € V. Then
p(m)(p()(v)) = p(ng)(v) = p(g)(p(g~ ng)(v)) = -

But p(g~'ng)(v) = (g~ ng)(v) = Y&(n)(v), by assumption. As this is a scalar, we can
pull it out:
= P3(n)p(g)(v)

Hence, p(g)(v) € Vys, as claimed. Since we have easy access to the inverse p(g‘l), it
follows that V}, = V. Pick any 1 € N* such that V¥ 2{0). Let S = (¢ : g € G} C N*.

EBVXQV:@VX:V

X€S XES

by irreducibility. Then, dim(V) = #S dim(V?). In particular, if H = {g € G : 8 = 1},
then #S = [G : H]. We claim that Indg(Vll’) = p.

BLAH! O
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PROOF.
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Fourier Transforms

Let G be a finite group. Let C(G, C) denote the space of functions (with no particular
structure) f : G — C. We can view this as a C-vector space equipped with addition and
scalar multiplication:

(f+8)s)=f(s)+ f(g)  flas)=af(s)

1 =
Under this view, C(G, C) has a basis {6 : s € G}, where 64(g) = {O §=3
o.w.

We can also view C(G, C) through the group ring C[G]. In particular, by defining the
convolution as follows
=) flst™!

teG
we see that C(G, C) = C[G] by associating

Y alsle fif(s)=ac  fr ) fis)s]
seG seG
We note the addition maps in the usual way:
Y adsl+ ) blsl 2 f+gifls)=agls) = b
seG seG

And multiplication maps via convolutions:

Zas[S]][st[S]]= D asbilstl= ) awbls] 2 hih(s)= ) awnib = (Fxg)s)

seG seG 5,teGXG 5,teGXG teG

where f & ) sas[s]and g & ) . bs[s].

Theorem 0.12 Properties of Group Convolutions
1. (f*g)*h=f=(g*h)
2. fr(@i+@)=f*q+f*&
@ +&)+f=a1*f+go+f
4. 64 %0 = Ogpy

5. The representation p of G on C(G, C) given by (bf)(x) = f(b~'x) is equivalent to
the regular representation p., on C[G].

Each of these is established via inheritance from the C[G] view (in particular, points
1, 2, and 3 are immediate).

For 4, see that 9, > [¢] in C[G], so we conclude that 6, * 6;, = [gh] < b4y,
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For 5,
bf & ) (bf)s)sl=) f(b7's)ls1=) f(s)bs]=[b]) f(s)ls]
seG seG seG seG
which is exactly p(b) (Y scc f(5)[s]). O

For f € C(G,C), we define the Fourier transform, denoted f, to be a function from  DEF 0.30
representations (p, V) to their endomorphism group End(V), with

Z:f s) € End(V)

seG

Theorem 0.13 Properties of Fourier Transforms

Let f,g € C(G,C). Let (p, V) be a representation. Then

A

1. f+g:f/4jgandafz]7:af.
2. 55(p) = pls)
3. frg=fo4
4. Let U € C(G, C) be the uniform probability distribution on G. Then U(p) is a

projection from V — V©. We conclude that U(Ptriv) =1eC*, and U(p;) = 0 for
any irreducible p;.

. PROOF.
1, 2 can be left as an exercise.

For 3, write

= X[Zf(sN)g(t)]p(s)

seG \teG

=) ) Ffsthgnps) =) ) fls)g(bplst
seG teG seG teG

=) ) f©)p(s)gp(t) = [Zf(s)p(s))[ig(t)p(t)]
seG teG seG teG

=(f o))

For 4, we see that

g0 =g ) UEps)v)=UM)) p(gs)v) = U1 ) p(s)v) = U(p)@)

seG seG seG

Noting that U(g) is constant over all ¢ € G. Thus, Im(U(p)) € VC. Showing
U(p)(U(p)(v)) = U(p)(v) is left as an exercise.
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Observe that VS under Puiv = V, and thus U(pmv) acts as the identity. However,

Im(U(p;)), for any irreducible p;, forms a non-trivial G-stable subspace V. Thus,
U(p,-) must be 0. O

Note that, if f is a probability distribution on G, we can view f(p) = E[p], viewing p as a
random variable which takes on values p(g) : g € G.

Theorem 0.14 Fourier Inversion and Plancherel

Fourier Inversion Formula

1 v o
f6) =15 ;ditr(ms Nf (i)

Plancherel’s Formula

Y AR = D_dix(ilon i)

seG
PROOE. Note that both sides of the Fourier inversion are linear in f. Similarly, both sides
of Plancherel’s formula are bi-linear in (f;, f;). Thus, it is enough to prove Fourier
inversion on f = 6, and similarly on f = 0,4, ¢ = 6 for Plancherel. Thus:
Fourier Inversion Formula Recalling that ag(p) =p(g),
= id'tr(n(sﬂé‘ (pi)) = = id-tr(p(s—l)p-(g))
|G| - 1 1 g 1 |G| = 1 1 1
1 n
_ -1,y _ -1
EﬂZ;MﬂSg)|qX%@ g)
1 s=¢
= = 5
{0 0.W. 8
Plancherel’s Formula
1 © 1 1 g=h!
— ) dtr (p; i(h) = =
Gl ; itr (pi(g)pi(h)) |G|Xreg(g ) {0 oW,
=) 5(sTH)n(s)
seG
O
PROP 0.30

io 2 = g Lt (ftenicen )
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To help with notation, we write k(s) = fo(s™!). We have

(fofadg = |1€| ;fl(s)k(s_l) = % ;fl(s_l)k(S)

Random Walks on Cyclic Groups

I Homological Algebra

EXACT SEQUENCES

PROOF.
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