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The first third of this course will be review from MATH 457. In particular, we will cover
representation theory, with an emphasis on Fourier analysis and induced representations.
The remainder of the course will be an introduction to homological algebra.

We require a cursory understanding of tensor products, categories, and functors. The
official prerequisite for this course is MATH 570 (which includes category theory, commu-
tative algebra, Noetherian rings), but these notes will be written from the point of view of
someone (me) who has not studied these topics.

commutator subgroups

Let G be a group. The commutatordef 0.1 of a, b ∈ G, denoted by [a, b], is the element aba−1b−1.
Clearly, [a, b] = 1 ⇐⇒ a and b commute. Let G′ ⊆ G be generated by all finite multipli-
cations of commutators, i.e.

G′ = ⟨[a, b] : a, b ∈ G⟩

G′ is called the commutator subgroupdef 0.2 of G.

prop 0.1 The commutator subgroup of G is normal.

proof. Note that g[a, b]g−1 = gaba−1b−1g−1 = [gag−1, gbg−1]. Then,

g[a1, b1] · · · [aN , bN ]g−1 = g[a1, b1]g−1 · g[a2, b2]g−1 · ... · g[aN , bN ]g−1 ∈ G′

prop 0.2 If H ◁ G, then G/H is abelian ⇐⇒ G′ ⊆ H .

proof. Suppose G/H is abelian. Consider aba−1b−1 = [a, b] ∈ G′. Then

aba−1b−1H = aH · bH · a−1H · b−1H = aa−1H · bb−1H = H

Hence, [a, b] ∈ H , so G′ ⊆ H . Conversely, suppose G′ ⊆ H . Then

a−1b−1abH = H =⇒ abH = baH

so G/H is abelian.

prop 0.3 G/G′ is the largest abelian subgroup of the form G/H for H ◁ G. In other words, G′ is the
smallest normal subgroup of G such that G/G′ is abelian.

proof. Suppose G/H is abelian. Then G′ ⊆ H by Prop 1.2. Thus, |G/G′ | ≥ |G/H |.

Gab := G/G′ is called the abelianizationdef 0.3 of G.

Theorem 0.1 Unique Factoring Over Abelianizations

Let ϕ : G→ A be a homomorphism into an abelian group. Then ϕ factors uniquely
into ϕ = ψ ◦ π, where π : G ↠ Gab is the natural quotient and ψ : Gab → A.

https://nicholashayek.com/tex/MATH/457/Algebra%204%20Notes.pdf
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proof.Recall the homomorphism theorem, of which the isomorphism theorem is a special
case. Let ϕ : G → H . Let N ⊆ ker(ϕ) be a normal subgroup of G. Then ϕ = ψ ◦ π,
where π : G ↠ G/N is the natural quotient and ψ : G/N → H is a homomorphism
(surjective into Im(ϕ)). Moreover, this decomposition is unique.

We apply this directly to the theorem above. Since A is abelian, so is Im(ϕ). But
Im(ϕ) � G/ ker(ϕ). By Prop 1.2, it follows that G′ ⊆ ker(ϕ). Since G′ is normal, the
homomorphism theorem applies.

tensor products of modules

1/7/26Let ModR and RMod denote the categories of left and right modules over a ring R,
respectively. Recall that, for an R-module M, r ∈ R, and m ∈ M, left modules act by
(r, m) 7→ rm and right modules act by (r, m) 7→ mr.

If a module is both a left and right module, and obeys all respective module axioms, we
call it a bimodule def 0.4, and write SModR for the category of bimodules.

If A ∈ ModR and B ∈ RMod, an R-biadditive def 0.5map is a function

f : A × B→ G

where H is a abelian. Additionally, we require that

• f (a1 + a2, b) = f (a1, b) + f (a2, b)

• f (a, b1 + b2) = f (a, b1) + f (a, b2)

• f (ar, b) = f (a, rb)

As H is a group, we do not impose any scaling qualities for f with respect to R.

We would like to construct an abelian group G and associated R-biadditive function ϕ
such that, for any R-biadditive function f , there is a unique group homomorphism g with

A × B G =: A ⊗R B

H

ϕ

f g

commuting. If such a pair (G, ϕ) exists, we say it satisfies the universal property def 0.6.

Construction

We will construct a group G which satisfies the universal property, as above

Consider H = Z · (A × B), the Z-module, and hence free abelian group. In other words,

H ∋ h = ⊕(a,b)∈A×Bk(a,b) · (a, b) where k(a,b) ∈ Z
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Furthermore, consider the subgroup N < H by

N = {(a1 + a2, b) − (a1, b) − (a2, b)} ∪ {(a, b1 + b2) − (a, b1) − (a, b2)} ∪ {(ar, b) − (a, rb)}

under a, ai ∈ A, b, bi ∈ B, and r ∈ R. One shows manually
that this is a group

Define A ⊗R B := H/N , and call this the tensor productdef 0.7 of A and B over R.

Let ϕ : A × B→ A ⊗R B be the natural map formed by viewing (a, b) as an element of the
Z-module H , and modding out by N as above.

Immediately, we see that the subgroup N ensures that ϕ is biadditive.

We denote the image of (a, b) under ϕ by a ⊗ b, and call the result a tensordef 0.8 .

prop 0.4 (ϕ, A ⊗R B) has the universal property.

V ∗ = Homk(V , k) is called the dual vector spacedef 0.9 . Recall that dimk(V ∗) = dimk(V ).

Theorem 0.2 Properties of the Tensor Product

1.

2. Homk(V ,W ) � V ∗ ⊗k W , V ,W are finite dimensional vector spaces over k.

3. dim(V ⊗k W ) = dimk (V ) · dimk(W )

4. If f ∈ HomR(A, A′), g ∈ HomR(B, B′), then

f ⊗ g : A ⊗R B→ A′ ⊗R B′ given by (a ⊗ b) 7→ f (a) ⊗ f (b)

is a homomorphism.

5. If A � A′ and B � B′, then A ⊗R B � A′ ⊗R B′

6. A ⊗R R = A and R ⊗R B = B

7. (⊕i∈IAi) ⊗R B � ⊕i∈I (Ai ⊗R B) and A ⊗ (⊕i∈IBi) = ⊕i∈IA ⊕R Bi

8. If R is commutative, then A ⊗R B = B ⊗R A.

9. If R is commutative, then A ⊗R (B ⊗R C) � (A ⊗R B) ⊗R C.

representations of finite groups

A linear representationdef 0.10 of a finite group G is a vector space V over a field F equipped with
a group action

G × V → V

that respects the vector space, i.e. mg : V → V with mg (v) = gv is a linear transformation.
We make the following assumptions unless otherwise stated:

1. G is finite.
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2. V is finite dimensional.

3. F is algebraically closed and of characteristic 0. We write F = C.

Since V is a G-set, ρ : G→ AutC(V ) which sends g 7→ mg is a homomorphism.

Relatedly, if dim(V ) < ∞, then ρ : G 7→ AutC(V ) = GLn(C).

The group ring def 0.11C[G] is a (typically) non-commutative ring consisting of all finite linear
combinations {

∑
g∈Gλgg : λg ∈ C}, with 1 · 1G = 1C[G]. It’s endowed with the multiplica-

tion rule ∑
g∈G

αgg


∑
h∈G

βhh

 =
∑

(g,h)∈G×G
αgβh(gh)

prop 0.5We can view representations as a module over the group ring C[G].

proof.Let V be a C[G]-module. Consider g ∈ G ⊆ C[G], λ1G ∈ C[G], and v1, v2 ∈ V . Since
V is a C[G]-module,

g(v1 + v2) = gv1 + gv2 (gh)v1 = g(hv1)

Then: (gλ1G)v1 = (λ(g1G))v1 = (λg)v1. But also, (gλ1G)v1 = g(λ1Gv1) = g(λv1).
Hence, the map v 7→ gv is a linear transformation on V over C.

We will frequently return to this view when module theory is more convenient.

Eg. 0.1 Consider ρ : G → {1}, the trivial representation def 0.12, which maps ρ(g)(v) = v. We
will denote the trivial representation simply by 1, subject to context.

Eg. 0.2 We call ρreg : h 7→
[∑

g∈G αgg 7→
∑
g∈G αghg

]
the regular representation def 0.13, with

G ⟳ C[G] by left multiplication.

Over C, C[G] has basis {g1, ..., gn}, where n = |G|. Then χ(h) = {gi ∈ G : hgi =
gi}. If h = 1, then χ(h) = |G|. Otherwise, it is impossible for hgi = gi .Generally, recall that

the trace counts the
number of basis

vectors which are
fixed by a

transformation

We conclude that

χreg(g) =

|G| g = 1

0 o.w.

Examples

restricted and induced representations

Let H < G be a subgroup. Then we consider a functor between the categories of represen-
tations of G and H ,

ResGH : Rep(G)→ Rep(H) : ρ 7→ ρ|H = ResGH (ρ)
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called the restricted representationdef 0.14 of G to H . Analogously, this sends a C[G]-module V to
the submodule W defined over C[H].

Similarly, we consider a functor

IndGH : Rep(H)→ Rep(G) : V 7→ C[G] ⊗C[H] V

called the induced representationdef 0.15 of H to G, where we view V as a C[G]-module. Observe
that dimC[H](C[G]) = [G : H], so dim(IndGH ) = [G : H] dim(V ).

Eg. 0.3 Consider H = {1} with the trivial representation on V = C. Then IndGH (C) =
C[G] ⊗C C = C[G], i.e. the regular representation.

dual representations

Let ρ, V be a representation of G. Recall the dual, V ∗ = HomC(V ,C), the set of linear
transformations from V → C. Given an endomorphism T : V → V , we call

T t : V ∗ → V ∗ : (T tϕ)(v) := ϕ(T v)

the transposedef 0.16 . If β = {v1, ..., vn} is a basis for V , then we construct the dual basis
def 0.17

β∗ =
{ϕ1, ..., ϕn} for V ∗, where ϕi(vj ) = δij . In the dual basis, we have

[T t]β∗ = [T ]tβ =⇒ tr(T ) = tr(T t)prop 0.6

proof. See MATH 251 notes.

When T = ρ(g) : V → V , we also observe

(ρ(gh)tϕ)(v) = (ρ(h)tρ(g)tϕ)(v) =⇒ ρ(gh)t = ρ(h)tρ(g)t

Given a representation ρ, ρ∗ : G→ GL(V ∗) by g 7→ ρ(g−1)t is called the dual representationdef 0.18 .

prop 0.7 χρ∗ = χρ

proof. If g ∈ G has order n, then ρ(g) has order m|n, since ρ(g)n = ρ(gn) = ρ(1) = I . Hence,
in a certain basis,

ρ(g) =


ξ1

ξ2
. . .

ξn

 where ξmi = 1

It follows that If ξ is a root of unity,
ξξ = 1 (try viewing
this geometrically)

ρ(g−1) =


ξ−1

1
. . .

ξ−1
n

 =


ξ1

. . .

ξn



https://nicholashayek.com/tex/MATH/251/Algebra%202%20Notes.pdf
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Thus, tr(ρ∗(g)) = tr(ρ(g−1)t) = tr(ρ(g−1)) = tr(ρ(g)), using Prop 1.2.

1-dim representations

A 1-dim representation def 0.19(ρ, V ) is a representation with dim(V ) = 1. In this case, as V is a
C-vector space and ρ(g) ∈ GL(V ), we write V = C×. Also observe that χρ = ρ.

G∗ = Hom(G,C×), as groups, is called the group of multiplicative characters def 0.20.

prop 0.8If G is a finite, abelian group, then every irreducible representation has dimension 1.

proof.See MATH 457.

prop 0.9(Gab)∗ � G∗

proof.If f ∈ (Gab)∗ is a homomorphism f : Gab → C×, then f ◦ π : G ↠ G/N → C× is also a
homomorphism. Conversely, any F : G→ C× must factor uniquely into f ◦ π by Thm
1.1, where f : Gab → C×. See the following diagram:

G C×

Gab

F

π f

tensor representations

If ρ is a finite representation of G and τ is a 1-dim representation, we can generate a new
representation

ρ ⊗ τ : G→ GL(V ⊗C C) � GL(V ) : g 7→ τ(g) ⊗ ρ(g)

Note that τ(g) ∈ C×, so χρ⊗τ = τχρ.

In generality, given two representations ρ1, ρ2, we generate the tensor product representa-
tion ρ1 ⊗ ρ2 over V1 ⊗C V2, with dimension dim(V1) dim(V2) and trace χρ1

χρ2
.

Irreducible Representations

Let (ρ, V ) be a representation. It is called an irreducible representation def 0.21if there are no G-
stable, nontrivial subspaces of V (i.e. no nontrivial subrepresentations). In the language
of modules, irreducible representations are simple C[G]-modules.

Theorem 0.3 Semi-Simplicity of Representations

Every finite dimensional, non-zero representation of G is a direct sum of irreducible
representations.This is "Maschke’s

Theorem" without
uniqueness
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proof. Pick any Hermitian inner product ⟨·, ·⟩ on V . Define

⟨u, v⟩∗ =
1
|G|

∑
g∈G
⟨gu, gv⟩

It can be easily verified that ⟨·, ·⟩∗ is an inner product which is G-equivariant. IfW ⊆ V
is a subrepresentation, then set W⊥ = {u : ⟨u, v⟩ = 0 ∀v ∈ W }, i.e. the orthogonal
complement of W with respect to ⟨·, ·⟩∗. It follows that V = W ⊕W⊥, with W⊥ being
G-stable by the G-equivariance of the inner product.

We then argue by induction to yield a direct sum of irreducible representations. See
MATH 457 for more details on semi-simplicity.

Based on this proof, we see that ρ(g) is unitary. One necessary and sufficient condition for
a transformation to be unitary is the existence of an inner product ⟨·, ·⟩∗ with ⟨T v, T w⟩∗ =
⟨v, w⟩∗. Unitary matrices are interesting for the following reasons:

• ρ(g)
t

= ρ(g)−1 = ρ(g−1)

• ρ(g) is diagonalizable. With gn = 1, we must be able to write ρ(g) with roots of unity
on the diagonal and zeros otherwise. In particular, the i-th diagonal element is ξi ,
where ξmi

i = 1, mi |n.

schur’s lemma

In this section, we will build up the intuition necessary for proving Schur’s Lemma.

1/9/26 Let (ρ, V ) be a representation. Let V G = {v : ρ(g)(v) = v : ∀g ∈ G} be the space of
invariant vectorsdef 0.22 . Notice that V G is a subrepresentation of V equivalent to 1 ⊕ · · · ⊕ 1

dim(V G) times

. Recall that 1 denotes
the trivial
representation.

prop 0.10 dim(V G) = 1
|G|

∑
g∈G χρ(g)

proof. Let π : v 7→ 1
|G|

∑
g∈G ρ(g)(v). Writing ρ(h)π = 1

|G|
∑
g∈G ρ(hg) = 1

|G|
∑
g∈G ρ(g) verifies

that Im(π) ⊆ V G. It is also easy to verify that π|V G = IdV G . Hence, we may write
V = ker(π) ⊕ V G. It follows that, in some basis,

π =
(
0 0
0 Idim(V G)

)
and thus tr(π) = dim(V G) = 1

|G|
∑
g∈G χρ(g).

Let (ρ1, V1), (ρ2, V2) be two representations. Consider

HomC(V1, V2) = {T : V1 → V2 with T C-linear}

This is a C-vector space of dimension dim(V1) dim(V2). Similarly, we consider

HomG(V1, V2)def 0.23 = {T : V1 → V2 with T ρ1(g) = ρ2(g)T }

https://nicholashayek.com/tex/MATH/457/Algebra%204%20Notes.pdf
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It is often more natural to think of HomG(V1, V2) as transformations which satisfy T (gv) =
gT (v) ∀v ∈ V1, noting the distinct actions of g on V1 and V2, respectively.

prop 0.11Over the vector space HomC(V1, V2), ρ : g 7→ [T 7→ ρ2(g−1)T ρ1(g)] is a G-representation.

proof.Clearly ρ2(g−1)T ρ1(g) ∈ HomC(V1, V2). Also note

ρ2((gh)−1)T ρ1(gh) = ρ2(h−1)ρ2(g−1)T ρ1(g)ρ2(h)

so ρ(gh) = ρ(g)ρ(h).

prop 0.12HomG(V1, V2) = (HomC(V1, V2))G

proof.Let T ∈ (HomC(V1, V2))G. Let g ∈ G. Then

gT = T =⇒ ρ2(g−1)T ρ1(g) = T =⇒ T ρ1(g) = ρ2(g)T

prop 0.13HomC(V1, V2) � V ∗1 ⊗ V2 as vector spaces and as G-representations.

prop 0.14dim(HomG(V1, V2)) = 1
|G|

∑
g∈G χ1(g)χ2(g)

proof.
dim(HomG(V1, V2)) = dim(HomC(V1, V2)G) = dim((V ∗1 ⊗ V2)G)

=
1
|G|

∑
g∈G

χρ∗1⊗ρ2
=

1
|G|

∑
g∈G

χρ∗1χρ2
=

1
|G|

∑
g∈G

χρ1
χρ2

=
1
|G|

∑
g∈G

χρ1
χρ2

In the last step, we use the fact that the dimension is always real, so dim = dim.

Eg. 0.4 Let G = Sn, V = Cn, and let ρ be the standard representation (i.e. permuting
indices). Then V G = {⟨x, ..., x⟩ : x ∈ C}. This implies that

1 = dim(V G) =
1
|G|

∑
σ∈Sn

χρ(σ ) Prop 1.10

But the trace of ρ(σ ) is exactly the number of fixed points of σ . To see this,
note that σ permutes i → j if the ith row is equal to ej . Hence

1 =
1
n!

∑
σ∈Sn

#FP of σ

On average, then, a random permutation has 1 fixed point.
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Theorem 0.4 Schur’s Lemma

Let (ρ, V ), (τ,W ) be irreducible representations of G. Then

HomG(V ,W ) �

C ρ � τ

0 ρ ≇ τ

proof. We claim that any nonzero T ∈ HomG(V ,W ) is an isomorphism.

ker(T ) and Im(T ) are subrepresentations of ρ and τ , respectively. Equivelantly, the
kernel and image of
a homomorphism of
modules are
submodules

Since both ρ and τ
are irreducible, it follows that ker(T ) = V ∨ 0, and Im(T ) = W ∨ 0.

ker(T ) = 0, since T is nonzero. Im(T ) , 0 for the same reason, so Im(T ) = W . It
follows that T is an isomorphism. Immediately, HomG(V ,W ) = 0 when ρ , τ .

Suppose ρ � τ . We can write HomG(V ,W ) = EndG(V ). Let T ∈ EndG(V ) be nonzero.
Let λ be some eigenvalue of T with corresponding eigenspace Uλ ⊆ V . Then

T (gu) = g(T u) = g(λu) = λgu ∀u ∈ U, g ∈ G

It follows that gu ∈ Uλ. Hence, Uλ is a G-stable subspace, and hence a subrepresenta-
tion. By irreducibly, Uλ = V , so T = λ.

By this argument, we can map T 7→ λT = tr(T )/ dim(V ) ∈ C. The converse map
λ 7→ λI completes the proof. The well-structuredness of this map derives from the
fact that

tr(T + G)
dim(V )

=
tr(T )

dim(V )
+

tr(G)
dim(V )

Class Functions

A function f : G → C is called a class functiondef 0.24 if f (hgh−1) = f (g). In other words, f is
constant on each conjugacy class of G.

We will denote by h(G) the number of conjugacy classes of G. Similarly,

Class(G)def 0.25 = {f : f is a class function on G}

Note that Class(G) is a C-vector space with dimension h(G). Its basis consists of
functions that are
the identity on each
class, and zero
elsewhere

Eg. 0.5 If G is abelian, then h(G) = |G|.

Eg. 0.6 h(Sn) is the number of permutations of n.

We can endow Class(G) with the inner product〈
ϕ, ψ

〉
=

1
|G|

∑
g∈G

ϕ(g)ψ(g)
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Note also that χρ is a class function. For the following theorems and propositions, we
will denote by (p1, V1), ..., (pn, Vn) the irreducible representations of G, along with their
dimensions di and characters λi for i ∈ [n].

Theorem 0.5 Irreducible Characters Form Orthonormal Basis of Class(G)

Up to isomorphism, the irreducible characters of G form an orthonormal basis for
Class(G). We conclude that #h(G) = #irreducible representations of G.

proof.Let σ, τ be irreducible representations. We do not distinguish between σ, τ and their
associated vector spaces. Then, by Schur’s Lemma (Thm 1.4) and Prop 1.14,

δσ,τ = dim(HomC(σ, τ)G) =
1
|G|

∑
g∈G

χσχτ = ⟨χσ , χτ⟩

From this, we conclude that the irreducible characters are orthonormal in Class(G). It
remains to show that they are a basis. From linear algebra (see MATH 251), we recall
the criterion 〈

χi , β
〉

= 0 ∀i ∈ [n] =⇒ β ∈ Class(G) ≡ 0

This ensures that Fourier coefficients always exist using the irreducible characters
provided, which establishes spanning-ness. Let α ∈ Class(G) : G→ C. Consider

Aρ =
∑
g∈G

α(g)ρ(g) ∈ EndC(V )

We claim that Ap ∈ EndG(V ). Write

ρ(h)Aρρ(h−1) =
∑
g∈G

α(g)ρ(hgh−1) =
∑
g∈G

α(hgh−1)ρ(hgh−1)

=
∑
g∈G

α(g)ρ(g) = Aρ

We claim that, if α = β, with ρ irreducible, then Aρ = 0. Schur’s Lemma gives the map

EndG(V )→ C : T 7→ tr(T )
dim(ρ)

Which we apply to Aρ

Aρ 7→
tr(

∑
g∈G α(g)ρ(g))

dim(ρ)
=
|G|

dim(ρ)
1
|G|

∑
g∈G

χρ(g)β(g) =
|G|

dim(ρ)

〈
χρ, β

〉
= 0

This holds for any irreducible representation, so, in particular, Aρi ∀i ∈ [n]. It must
also hold for the regular representation. Hence, Aρreg = 0 on EndG(C[G]). Consider

https://nicholashayek.com/tex/MATH/251/Algebra%202%20Notes.pdf
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1G. Then we must have ∑
g∈G

α(g)ρreg(g)(1G) =
∑
g∈G

α(g)[g] = 0

Since [g] : g ∈ G is a basis for C[G], it must be that α(g) = 0 ∀g ∈ G. As α = β, the
result follows.

Theorem 0.6 Mascke’s Theorem

If (ρ, V ) is a representation of G, then it has a unique decomposition

ρ � ρa1
1 ⊕ · · · ⊕ ρ

an
n V ψ

where ai = ⟨λρ, λi⟩.

proof. Letting ai be as in Thm 1.3, we know χρ =
∑n
i=1 aiλi . It remains to show that ai are

unique. But we can compute

⟨χρ, χi⟩ =
n∑
j=1

ai ⟨χj , χi⟩
δij by Thm 1.5

= ai

prop 0.15 ρ � τ ⇐⇒ χρ = χτ

proof. We only need to consider the (⇐= ) direction. In this case, we write

⟨χρ, χi⟩ = ⟨χτ , χi⟩ ∀i

But these are the multiplicities of the irreducible characters in ρ and τ , so ρ � τ .

prop 0.16 Let ρreg be the regular representation of G on C[G]. We have

ρreg � ρd1
1 ⊕ · · · ⊕ ρ

dn
n

Consequently, |G| =
∑n
i=1 d

2
i .

proof.

⟨χreg, χi⟩ =
1
|G|

∑
g∈G

χreg(g)χi(g) =
1
|G|
|G|χi(1) = di

prop 0.17 ρ is irreducible ⇐⇒ ||χρ||2 = 1. Similarly, ρ is the direct sum of two irreducible
representations ⇐⇒ ||χρ||2 = 2.
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proof.We know ||χρ||2 =
∑h
i=1 a

2
i , where ai is the multiplicity of the i-th irreducible repre-

sentation in ρ’s decomposition. Recall

||χρ||2 =
〈
χρ, χρ

〉
= ⟨a1χ1 + ... + ahχh, a1χ1 + ... + ahχh⟩

=
h∑
i=1

⟨aiχi , a1χ1 + ... + ahχh⟩

=
h∑
i=1

a2
i ⟨χi , χi⟩ =

h∑
i=1

a2
i

It follows that ||χρ||2 = 1 if and only if exactly one of a2
i = 1, i.e. χρ is irreducible. If

||χρ||2 = 2, we must have some i , j with a2
i = a2

j = 1, and so ρ = ρi ⊗ ρj , where ρi , ρj
are irreducible.

Eg. 0.7 Consider Sn : n ≥ 2. We consider ρstd, the natural action of Sn on a set of n
elements (e.g. permuting the indices of v ∈ Cn). Recall Example 1.4, where
we derived

1 =
1
n!

∑
σ∈Sn

χstd(σ ) =
1
n!

∑
σ∈Sn

#FP of σ

But also
||χstd||2 =

1
n!

∑
σ∈Sn

(χstd(σ ))2 =
1
n!

∑
σ∈Sn

(#FP of σ )2

To analyze this equation, we define an action of Sn on [n]2, which sends
σ (i, j) = (σ (i), σ (j)). We observe exactly 2 orbits under this action: {(i, i) : i ∈
[n]} and {(i, j) : i , j ∈ [n]}. By Burnside’s Lemma,

2 =
1
n!

∑
σ∈Sn

(#FP of σ on [n]2)

Observe that, σ has a fixed point (k, ℓ) ∈ F on [n]2 if and only if it is fixed on
each coordinate of each fixed point. In this way, we have a n− to−n2 mapping,
and conclude that ||χstd||2 = 2.

Note that the trivial representation is a G-stable subrepresentation of ρstd. By
"subtracting" 1 from ρstd we can recover the other irreducible representation
implied by the computation above, which we denote by ρstd,0. In particular

ρstd = 1 ⊕ ρstd,0

prop 0.18Every irreducible representation of an abelian group is one dimensional.

proof.As G is abelian, h = |G|. Then, |G| =
∑|G|
i=1 d

2
i , from which we conclude di = 1 ∀i.
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Character Tables

We’ll fire off a few propositions that follow immediately from the work we’ve done on
class functions.prop 0.19

∑n
i=1 diχi = χreg (recall Def 0.13)

proof. Follows immediately from Prop 1.19.

prop 0.20 Let χ be irreducible. Let C1, ..., Cn be conjugacy classes. Recall that the
number of conjugacy
classes and
irreducible
representations are
the same, i.e. n

Then
∑n
i=1 χ(Ci)|Ci | =

0 χ , 1

|G| χ = 1
.

By χ(Ci), we mean the representation evaluated on any element in Ci .

proof. Note that χ1(g) = 1 ∀g ∈ G. Hence,

n∑
i=1

χ(Ci)|Ci | =
∑
g∈G

χ(g)χ1(g) = |G| ⟨χ, χ1⟩

prop 0.21 The number of 1-dim irreducible representations is equal to |Gab|.

proof. Observe that G∗ = Hom(G, C×) � Hom(Gab, C×) by Thm 1.1. But, in homework, we
proved Hom(Gab, C×) � Gab (in particular, for any finite, abelian group).

prop 0.22 The inner product of character table rows, weighted by class size, is 0, unless the rows are
equal, in which case it is |G|. Similarly, the inner product of character table columns is 0,
unless the rows are equal, in which case it is |G||Ci | .

proof. For rows:
∑n
i=1 χi(Ck)χj(Ck)|Ck | =

∑
g∈G χi(g)χj(g) = |G|

〈
χi , χj

〉
.

For columns, see MATH 457.

prop 0.23 If dim(χi) = 1, then ∀j ∈ [n], χiχj is also an irreducible character. We call this twisting
def 0.26

.

proof. χiχj refers to the character χρi⊗ρj . We use the criterion outlined in Prop 1.20.

||χiχj ||2 =
1
|G|

∑
g∈G

χi(g)χi(g)χj(g)χj(g) = ||χj ||2 = 1

Observing that χi(g) ∈ C× is a root of unity, and therefore χi(g) = χi(g)−1 = χi(g−1).
We conclude that χiχj is irreducible.

We define ker(χ) = {g : χ(g) = χ(1)}. Recall χ(1) = dim(V ).

prop 0.24 ker(χρ) = ker(ρ), where ρ is not necessarily irreducible.
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proof.With gn = 1, recall that we can write

ρ(g) =


ξ1

. . .
ξd

 ξni = 1

Then, χ(g) = d ⇐⇒ ρ(g) = Id ⇐⇒ g ∈ ker(ρ).

prop 0.25Let ρ be a representation with a decomposition into irreducible characters χρ =
∑
i∈I aiχi ,

ai > 0. Then ker(χρ) = ∩i∈I ker(χi).

proof.g ∈ ker(χ) ⇐⇒ ρ(g) = Idim(ρ) ∀i ∈ I ⇐⇒ ρi(g) = Idi ⇐⇒ g ∈ ker(χi) ∀i ∈ I . For
the middle if-and-only-if, note that, as a direct sum of irreducible representations,
we may write ρ(g)’s matrix as ai diagonally-adjacent block matrices of ρi(g), for each
i ∈ I .

prop 0.26For any N ◁ G, we have N = ker(χ) for some representation χ.

proof.Let σ be the composition of maps

G
π
↠ G/N

ρreg
↪→ GL (C [G/N ])

Then σ is a representation, and ker(π) = N . But ρreg(g) is faithful, i.e only the identity
when g = 1. We conclude that ker(σ ) = N , so ker(χσ ) = N .

Theorem 0.7 Normal Subgroups and Characters

Let Ni = ker(χi) : i ∈ [n]. Then, for any I ⊆ [n], we have

NI :=
⋂
i∈I

Ni

is a normal subgroup of G. Furthermore, for any N ◁ G, there is some index set I ⊆ [n]
for which N = NI .

proof.Since Ni = ker(ρi), we know that Ni ◁ G. Thus, NI = ∩i∈INi is also normal.Recall that
ρi : G→ GL(Vi ) is a

homomorphism

Finally,
if N ◁ G, then by Prop 1.29, N = ker(χ) for some representation χ. By Prop 1.28, we
can write N = ∩i∈I ker(χi), where ρ = ⊕i∈Iρai .

Induced Representations

Let H < G, and let (ρ, χ, V ) be a representation of H . Recall the induced representation,
Def 0.15, IndGH (ρ) = C[G] ⊗C[H] V . We wish to study its character, denoted by IndGH (χ).
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Let g1, ..., gd be the coset representations for H , where d = [G : H]. In particular, we can
write G = ⊔i∈[d]giH , and thus C[G] = ⊕i∈[d][gi]C[H]. Then

IndGH (ρ) =
(
⊕i∈[d][gi]C[H]

)
⊗C[H] V = ⊕i∈[d]

(
[gi]C[H] ⊗C[H] V

)
= ⊕i∈[d]([gi] ⊗C[H] V )

Given g ∈ G, how does IndGH (ρ) act? We first write ggi = gjh for some unique coset
representative gj and h ∈ H . Then, ∀v ∈ V ,

g([gi] ⊗ v) = (g ⊗ 1)([gi] ⊗ v) = [ggi] ⊗ v = [gjh] ⊗ v

From here on out, we will drop the [·] notation. Now, viewing ρ as a C[H]-module, and
using the balancing property of tensor products, gjh ⊗ v = gj ⊗ hv, where hv = ρ(h)(v):

g(gi ⊗ v) = gj ⊗ ρ(h)(v)

At this point, we let ℏ(g, i) be element h ∈ H that satisfies ggi = gjh = gjℏ(g, i). Similarly,
we let δ(g, i) be gj ∈ G such that ggi = δ(g, i)ℏ(g, i).

In IndGH (ρ), we have

g(g1 ⊗ vi1 , ..., gd ⊗ vid ) = (δ(g, 1) ⊗ ρ(ℏ(g, 1))(v1), ..., δ(g, d) ⊗ ρ(ℏ(g, d))(vd))

δ(g, i) : i ∈ [d] permutes the basis vectors g1, ..., gd . Hence, IndGH (ρ)(g), in some suitable
basis, can be thought of as a set of block matrices {ρ(ℏ(g, i)) : i ∈ [d]}, positioned accord-
ingly in columns i ∈ [d]. However, to account for the permutation δ(g, i), the block matrix
ρ(ℏ(g, i)) is placed in the δ(g, i)-th row, or rather the k-th column, where gk = δ(g, i).

This block contributes to the trace if and only if δ(g, i) corresponds to the i-th basis vector,
i.e. ⇐⇒ ggi = giℏ(g, i) ⇐⇒ g−1

i ggi ∈ H . In this case, the trace contributed is equal to
χ(ℏ(g, i)) = χ(g−1

i ggi). In short, then, we have the following result:

Theorem 0.8 Character of the Induced Representation

IndGH (χ)(g) =
∑

gi :g
−1
i ggi∈H

χ(g−1
i ggi)

proof. See above discussion.

This lends itself to some simplifications. We adopt the notation χ̇(g) =

χ(g) g ∈ H
0 o.w.

.

prop 0.27 IndGH (χ)(g) =
1
|H |

∑
b∈G

χ̇(b−1gb)
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proof.IndGH (χ)(g) =
∑
i∈[d] χ̇(g−1

i ggi). Let h ∈ H . Then (gih)−1g(gih) = h−1(g−1
i ggi)h. But χ

is a class function, so χ(h−1(g−1
i ggi)h) = χ(g−1

i ggi). As gi are coset representatives,

1
|H |

∑
b∈giH

χ̇(b−1gb) = χ̇(g−1
i ggi)

Then, summing over cosets gives the result.

prop 0.28When H ◁ G,

IndGH (χ)(g) =

 1
|H |

∑
b∈G χ(b−1gb) g ∈ H

0 g < H

proof.Since H is normal, b−1gb ∈ H ⇐⇒ g ∈ H . It follows that χ̇(b−1gb) = χ(b−1gb) when
g ∈ H . On the other hand, we have g < H ⇐⇒ b−1gb < H , so χ̇(b−1gb) = 0 when
g < H .

Theorem 0.9 Frobenius Reciprocity

Let H < G. Denote by ⟨·, ·⟩H and ⟨·, ·⟩G the usual inner products on Class(H) and
Class(G), respectively. Let η and γ be representations of H and G, respectively. Then〈

IndGH (η), γ
〉
G

=
〈
η,ResGH (γ)

〉
H

proof.

〈
IndGH (η), γ

〉
G

=
1
|G|

∑
g∈G

Ind(η)(g)γ(g) =
1
|G|

∑
g∈G

∑
b∈G

1
|H |

η̇(b−1gb)γ(g)

=
1

|G| · |H |

∑
g,b:b−1gb=t∈H

η(t)γ(btb−1)

=
1

|G| · |H |

∑
t∈H

∑
b∈G

η(t)γ(btb−1) =
1
|G|

∑
t∈H

η(t)γ(t)

=
〈
η,ResGH (γ)

〉
H

Eg. 0.8 Let H = {1} and η = χtriv. Then IndGH (η) = χreg. Let χ be irreducible on G. By
the theorem above,

⟨χreg, χ⟩G = ⟨χtriv, σ⟩H = dim(χ)

where σ is a dim(χ)-identity matrix on H = {1}. At the same time, we know
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that ⟨χreg, χ⟩G is the multiplicity of χ in χreg. But this is exactly consistent
with what we found.

Supersolvable Groups

We say that G is solvabledef 0.27 if there exists a chain

G = G0 ⊇ G1 ⊇ · · · ⊇ GN = {1}

with Gi+1 ◁ Gi and Gi/Gi+1 abelian. We may assume that Gi/Gi+1 is cyclic of prime
order.

proof. Refine the chain until no normal subgroups can be inserted. In other words, if there
exists H : Gi+1 ◁ H ◁ Gi , insert this into the chain. Once this is complete, it must be
that Gi/Gi+1 is simple. Suppose not, and let H ◁ Gi/Gi+1 Consider the following:

Gi

Gctdcn Gi/Gi+1

Gi+1 H

{1}

π

π

π−1

The preimage under a homomorphism of a normal subgroup is also normal. This
contradicts the refinement of the chain. It is well-known that the only simple abelian
groups are prime and cyclic. Hence, Gi/Gi+1 are assumed to be so.

We say that G is supersolvabledef 0.28 if there exists a chain

G = G0 ⊇ G1 ⊇ · · · ⊇ GN = {1}

with Gi ◁ G and Gi/Gi+1 cyclic. As before, we may assume that Gi/Gi+1 has prime order.

prop 0.29 The following are properties of supersolvable groups:

1. If G is supersolvable, then so is H < G

2. If G is supersolvable, and G ↠ H is surjective, then so is H

3. If G is a p-group, then it is supersolvable

4. If G1, G2 are both supersolvable, then so is G1 ⊕ G2.

Theorem 0.10 Blichfeldt’s Lemma

Let G be a finite, non-abelian supersolvable group. Then there exists N ◁ G, with N
abelian but N ⊈ Z(G).
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proof.Since G is non-abelian, we know G0 = G ⊈ Z(G). But it is true that GN = {1} ⊆ Z(G).
Hence, there must be some Gi with Gi ⊈ Z(G) but Gi−1 ⊆ Z(G). It only remains to
show that N = Gi is abelian.

Since Gi/Gi+1 is cyclic, we can generate it with ⟨x⟩ for some x ∈ N . Then, any element
in Gi can be written as xay for some integer a and y ∈ Gi+1.

xa1y1x
a2y2

Gi−1⊆Z(G)
= xa1xa2y1y2 = xa2y2x

a1y1

as desired.

Theorem 0.11 Blichfeldt’s Theorem

Let G be a finite, supersolvable group. Let (ρ, V ) be some irreducible representation
of G. Then p � IndGH (ψ) for some subgroup H < G and 1-dim representation ψ of H .

proof.If G is abelian, we have no work to do. IndGG(ρ) = ρ clearly, and for all representations
of G, ρ ∈ G∗ is 1-dim. Hence, assume G is non-abelian. We also assume that ρ is
faithful, i.e. has a trivial kernel, as quotients of supersolvable groups are supersolvable.
In particular, ρ is faithful on G/ ker(ρ).

We proceed by induction on |G|. Let N be as in Thm 1.10. Then V can be viewed as a
representation of N via ResGN (ρ). As N is abelian, its irreducible characters are 1-dim.
Hence, V � ⊕ψ∈N ∗Vψ, where Vψ = {v ∈ V : ρ(n)(v) = ψ(v) ∀n ∈ N }.

For any ψ ∈ N ∗ and g ∈ G, we define ψg : N → C× : ψg (n) = ψ(g−1ng). We claim that
ρ(g) is a map Vψ → Vψg . Let v ∈ Vψ. Then

ρ(n)(ρ(g)(v)) = ρ(ng)(v) = ρ(g)(ρ(g−1ng)(v)) = · · ·

But ρ(g−1ng)(v) = ψ(g−1ng)(v) = ψg(n)(v), by assumption. As this is a scalar, we can
pull it out:

· · · = ψg(n)ρ(g)(v)

Hence, ρ(g)(v) ∈ Vψg , as claimed. Since we have easy access to the inverse ρ(g−1), it
follows that Vψ � Vψg . Pick any ψ ∈ N ∗ such that V ψ , {0}. Let S = {ψg : g ∈ G} ⊆ N ∗.⊕

χ∈S
V χ ⊆ V =⇒

⊕
χ∈S

V χ = V

by irreducibility. Then, dim(V ) = #S dim(V ψ). In particular, if H = {g ∈ G : ψg = ψ},
then #S = [G : H]. We claim that IndGH (V ψ) � ρ.

BLAH!
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Fourier Transforms

Let G be a finite group. Let C(G,C) denote the space of functions (with no particular
structure) f : G→ C. We can view this as a C-vector space equipped with addition and
scalar multiplication:

(f + g)(s) = f (s) + f (g) f (αs) = αf (s)

Under this view, C(G,C) has a basis {δs : s ∈ G}, where δs(g) =

1 g = s

0 o.w.
.

We can also view C(G,C) through the group ring C[G]. In particular, by defining the
convolutiondef 0.29 as follows

(f ∗ g)(s) =
∑
t∈G

f (st−1)g(t)

we see that C(G,C) � C[G] by associating∑
s∈G

as[s] 7→ f : f (s) = as f 7→
∑
s∈G

f (s)[s]

We note the addition maps in the usual way:∑
s∈G

as[s] +
∑
s∈G

bs[s] 7→
← [ f + g : f (s) = as, g(s) = bs

And multiplication maps via convolutions:∑
s∈G

as[s]


∑
s∈G

bs[s]

 =
∑

s,t∈G×G
asbt[st] =

∑
s,t∈G×G

ast−1bt[s] 7→
← [ h : h(s) =

∑
t∈G

ast−1bt = (f ∗g)(s)

where f ↔
∑
s∈G as[s] and g ↔

∑
s∈G bs[s].

Theorem 0.12 Properties of Group Convolutions

1. (f ∗ g) ∗ h = f ∗ (g ∗ h)

2. f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2

3. (g1 + g2) ∗ f = g1 ∗ f + g2 ∗ f

4. δg ∗ δh = δgh

5. The representation ρ of G on C(G,C) given by (bf )(x) = f (b−1x) is equivalent to
the regular representation ρreg on C[G].

proof. Each of these is established via inheritance from the C[G] view (in particular, points
1, 2, and 3 are immediate).

For 4, see that δg 7→ [g] in C[G], so we conclude that δg ∗ δh 7→ [gh]←[ δgh.
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For 5,

bf ↔
∑
s∈G

(bf )(s)[s] =
∑
s∈G

f (b−1s)[s] =
∑
s∈G

f (s)[bs] = [b]
∑
s∈G

f (s)[s]

which is exactly ρ(b) (
∑
s∈G f (s)[s]).

For f ∈ C(G,C), we define the Fourier transform def 0.30, denoted f̂ , to be a function from
representations (ρ, V ) to their endomorphism group End(V ), with

f̂ (ρ) =
∑
s∈G

f (s)ρ(s) ∈ End(V )

Theorem 0.13 Properties of Fourier Transforms

Let f , g ∈ C(G,C). Let (ρ, V ) be a representation. Then

1. f̂ + ĝ = f̂ + g and α̂f = αf̂ .

2. δ̂s(ρ) = ρ(s)

3. f̂ ∗ g = f̂ ◦ ĝ

4. Let U ∈ C(G,C) be the uniform probability distribution on G. Then Û (ρ) is a
projection from V → V G. We conclude that Û (ρtriv) = 1 ∈ C×, and Û (pi) = 0 for
any irreducible ρi .

proof.1, 2 can be left as an exercise.

For 3, write

f̂ ∗ g(ρ) =
∑
s∈G

∑
t∈G

f (st−1)g(t)

 ρ(s)

=
∑
s∈G

∑
t∈G

f (st−1)g(t)ρ(s) =
∑
s∈G

∑
t∈G

f (s)g(t)ρ(st)

=
∑
s∈G

∑
t∈G

f (s)ρ(s)g(t)ρ(t) =

∑
s∈G

f (s)ρ(s)


∑
t∈G

g(t)ρ(t)


= (f̂ ◦ ĝ)(ρ)

For 4, we see that

gÛ (ρ)(v) = g
∑
s∈G

U (s)ρ(s)(v) = U (1)
∑
s∈G

ρ(gs)(v) = U (1)
∑
s∈G

ρ(s)(v) = Û (ρ)(v)

Noting that U (g) is constant over all g ∈ G. Thus, Im(Û (ρ)) ⊆ V G. Showing
Û (ρ)(Û (ρ)(v)) = Û (ρ)(v) is left as an exercise.
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Observe that V G under ρtriv = V , and thus Û (ρtriv) acts as the identity. However,
Im(Û (ρi)), for any irreducible ρi , forms a non-trivial G-stable subspace V G. Thus,
Û (ρi) must be 0.

Note that, if f is a probability distribution on G, we can view f̂ (ρ) = E[ρ], viewing ρ as a
random variable which takes on values ρ(g) : g ∈ G.

Theorem 0.14 Fourier Inversion and Plancherel

Fourier Inversion Formula

f (s) =
1
|G|

n∑
i=1

ditr
(
ρi(s

−1)f̂ (ρi)
)

Plancherel’s Formula

∑
s∈G

f1(s−1)f2(s) =
1
|G|

n∑
i=1

ditr
(
f̂1(ρi)f̂2(ρi)

)
proof. Note that both sides of the Fourier inversion are linear in f . Similarly, both sides

of Plancherel’s formula are bi-linear in (f1, f2). Thus, it is enough to prove Fourier
inversion on f = δg , and similarly on f = δg , g = δh for Plancherel. Thus:

Fourier Inversion Formula Recalling that δ̂g(ρ) = ρ(g),

1
|G|

n∑
i=1

ditr
(
ρi(s

−1)δ̂g(ρi)
)

=
1
|G|

n∑
i=1

ditr
(
ρi(s

−1)ρi(g)
)

=
1
|G|

n∑
i=1

diχi(s
−1g) =

1
|G|
χreg(s−1g)

=

1 s = g

0 o.w.
= δg

Plancherel’s Formula

1
|G|

n∑
i=1

ditr (ρi(g)ρi(h)) =
1
|G|
χreg(gh) =

1 g = h−1

0 o.w.

=
∑
s∈G

δg(s−1)δh(s)

prop 0.30

⟨f1, f2⟩ =
1
|G|2

n∑
i=1

ditr
(
f̂1(ρi)f̂2(ρi)

t)
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proof.To help with notation, we write k(s) = f2(s−1). We have

⟨f1, f2⟩G =
1
|G|

∑
s∈G

f1(s)k(s−1) =
1
|G|

∑
s∈G

f1(s−1)k(s)

Random Walks on Cyclic Groups

I Homological Algebra
exact sequences
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